Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.166
Filtrar
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286626

RESUMO

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Consolidação da Memória , Ratos , Masculino , Feminino , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Consolidação da Memória/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Cicloeximida/farmacologia , Medo/fisiologia
2.
Life Sci ; 340: 122454, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262574

RESUMO

AIMS: Although the functions of progesterone in the myometrium are well-established, the nongenomic effects of progesterone in pregnant myometrial contractions are still unclear. Therefore, this study aimed to investigate changes in the nongenomic effects of progesterone during pregnancy. MAIN METHODS: Myometrial strips were obtained from non-pregnant, pregnant, and postpartum rats, and the nongenomic effects of progesterone in the myometrium during pregnancy were examined. Additionally, the influence of actinomycin D and cycloheximide and the effects of Org OD-02-0 (a specific membrane progesterone receptor (mPR) agonist) in the myometrium were investigated. Moreover, DNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to identify genes involved in progesterone-induced effects in the myometrium. KEY FINDINGS: Progesterone did not cause rhythmic contractions in non-pregnant myometrium but induced rhythmic contractions in pregnant myometrium, with the effects peaking at 20 d + 8 h of pregnancy. However, myometrial contractions decreased after delivery and were restored to non-pregnant levels at 7 d postpartum. Additionally, progesterone stably inhibited high KCl-induced myometrial contractions during pregnancy. Moreover, the nongenomic effects of progesterone were unaffected by actinomycin D or cycloheximide, and Org OD-02-0 effectively mimicked these effects. DNA microarray analysis and qRT-PCR revealed a significant increase in mPRß gene expression during pregnancy. However, mPRα, mPRγ, mPRδ, and mPRε expression levels remained unchanged. SIGNIFICANCE: The stimulatory nongenomic effect of progesterone, which was inducible and mPRß-dependent during pregnancy, may be involved in parturition. The inhibitory effect, which was constitutive and depended on other mPRs, may be involved in pregnancy maintenance.


Assuntos
Miométrio , Progesterona , Gravidez , Feminino , Ratos , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Miométrio/metabolismo , Cicloeximida/farmacologia , Cicloeximida/metabolismo , Dactinomicina/farmacologia , Dactinomicina/metabolismo , Receptores de Progesterona/metabolismo , Progestinas/farmacologia , Contração Uterina
3.
Learn Mem ; 31(1-2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38286522

RESUMO

We investigated whether retrograde amnesia for the stress-induced impairment of extinction retrieval shares similar characteristics with original acquisition memories. The first experiment demonstrated that cycloheximide administered shortly after a single restraint stress session alleviated the impairment of extinction retrieval but not when administered following a longer delay (i.e., the amnesia for stress is time-dependent). A second experiment showed that the retrograde amnesia for stress could be alleviated by a second brief exposure to the stressor. These results demonstrating that amnesia for stress shares characteristics similar to original memories are explained using a retrieval-based memory integration model of retrograde amnesia.


Assuntos
Amnésia Retrógrada , Transtornos da Memória , Humanos , Amnésia Retrógrada/induzido quimicamente , Amnésia , Cicloeximida/farmacologia
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958778

RESUMO

Oocyte activation via dual inhibition of protein synthesis and phosphorylation has improved in vitro embryo production in different mammalian species. In this study, we evaluated the effects of the combination of cycloheximide (CHX), dimethyl amino purine (DMAP), and anisomycin (ANY) on the activation of bovine oocytes, particularly on dynamics of MPF and MAPKs, embryonic developmental potential, and quality. The results showed that the cleavage and blastocyst rates, as well as levels of CCNB1, CDK1, p-CDK1Thr161, and p-CDK1Thr14-Tyr15, were similar among groups; ANY and ANY + CHX reduced the expression of ERK1/2 compared to DMAP-combinations (p < 0.05), whereas ANY + DMAP, CHX + DMAP, and ANY + CHX + DMAP reduced p-ERK1/2 compared to ANY and ANY + CHX treatments (p < 0.05). The quality of blastocysts in terms of cell counts, their allocation, and the numbers of TUNEL-positive cells did not differ among groups. However, transcript levels of POU5F1 were higher in embryos derived from ANY + CHX + DMAP treatment compared to other groups, while expression levels of CDX2 did not show differences. In addition, the BCL2A1/BAX ratio of the ANY + CHX + DMAP treatment was significantly low compared to the ANY treatment (p < 0.05) and did not differ significantly from the other treatments. In conclusion, oocyte activation by dual inhibition of protein synthesis and phosphorylation induces MPF inactivation without degradation of CCNB1, while MAPK inactivation occurs differentially between these inhibitors. Thus, although the combined use of these inhibitors does not affect early developmental competence in vitro, it positively impacts the expression of transcripts associated with embryonic quality.


Assuntos
Fator Promotor de Maturação , Partenogênese , Bovinos , Animais , Proteínas Quinases Ativadas por Mitógeno , Adenina/farmacologia , Oócitos , Cicloeximida/farmacologia , Blastocisto , Anisomicina/farmacologia , Mamíferos
5.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895141

RESUMO

Since glucose stimulates protein biosynthesis in beta cells concomitantly with the stimulation of insulin release, the possible interaction of both processes was explored. The protein biosynthesis was inhibited by 10 µM cycloheximide (CHX) 60 min prior to the stimulation of perifused, freshly isolated or 22 h-cultured NMRI mouse islets. CHX reduced the insulinotropic effect of 25 mM glucose or 500 µM tolbutamide in fresh but not in cultured islets. In cultured islets the second phase of glucose stimulation was even enhanced. In fresh and in cultured islets CHX strongly reduced the content of proinsulin, but not of insulin, and moderately diminished the [Ca2+]i increase during stimulation. The oxygen consumption rate (OCR) of fresh islets was about 50% higher than that of cultured islets at basal glucose and was significantly increased by glucose but not tolbutamide. In fresh, but not in cultured, islets CHX diminished the glucose-induced OCR increase and changes in the NAD(P)H- and FAD-autofluorescence. It is concluded that short-term CHX exposure interferes with the signal function of the mitochondria, which have different working conditions in fresh and in cultured islets. The interference may not be an off-target effect but may result from the inhibited cytosolic synthesis of mitochondrial proteins.


Assuntos
Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Cicloeximida/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Tolbutamida/farmacologia , Tolbutamida/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Cálcio/metabolismo
6.
mSphere ; 8(4): e0025423, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37358297

RESUMO

Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 (CYB5, SSK1, SSK2, HOG1, TRP1). A bZIP transcription repressor of mitochondrial function (CIN5) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata. Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. IMPORTANCE Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1-a key determinant of fluconazole resistance-is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.


Assuntos
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida glabrata/genética , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia
7.
Sci Rep ; 13(1): 7628, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165015

RESUMO

DNA recombination techniques in mammalian cells has been applied to the production of therapeutic proteins for several decades. To be used for commercial production, established cell lines should stably express target proteins with high productivity and acceptable quality for human use. In the conventional transfection method, the screening process is laborious and time-consuming since superior cell lines had to be selected from an enormous number of transfected cell pools and clonal cell lines with a wide variety of transgene insertion locations. In this study, we demonstrated that the combination of a Tol2 transposon system and cell selection by cycloheximide resistance is an efficient method to express therapeutic proteins, such as human antibody in suspension culture of Chinese hamster ovary cells. The resulting stable cell lines showed constant productivity and cell growth over a long enough cultivation periods for recombinant protein production. We anticipate that this approach will prove widely applicable to protein production in research and development of pharmaceutical products.


Assuntos
Cricetulus , Cricetinae , Animais , Humanos , Células CHO , Cicloeximida/farmacologia , Proteínas Recombinantes/genética , Células Clonais , Transfecção
8.
Invest New Drugs ; 41(4): 541-550, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233863

RESUMO

TP53 (p53) and MYC are amongst the most frequently altered genes in cancer. Both are thus attractive targets for new anticancer therapies. Historically, however, both genes have proved challenging to target and currently there is no approved therapy against either. The aim of this study was to investigate the effect of the mutant p53 reactivating drug, COTI-2 on MYC. Total MYC, pSer62 MYC and pThr58 MYC were detected using Western blotting. Proteasome-mediated degradation was determined using the proteasome, inhibitor MG-132, while MYC half-life was measured using pulse chase experiments in the presence of cycloheximide. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Treatment of 5 mutant p53 breast cancer cell lines with COTI-2 resulted in dose-dependent MYC degradation. Addition of the proteasome inhibitor, MG132, rescued the degradation, suggesting that this proteolytic system was at least partly responsible for the inactivation of MYC. Using cycloheximide in pulse chase experiments, COTI-2 was found to reduce the half-life of MYC in 2 different mutant p53 breast cancer cell lines, i.e., from 34.8 to 18.6 min in MDA-MB-232 cells and from 29.6 to 20.3 min in MDA-MB-468 cells. Co-treatment with COTI-2 and the MYC inhibitor, MYCi975 resulted in synergistic growth inhibition in all 4 mutant p53 cell lines investigated. The dual ability of COTI-2 to reactivate mutant p53 and degrade MYC should enable this compound to have broad application as an anticancer drug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Cicloeximida/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108141

RESUMO

The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Cicloeximida/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bleomicina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
10.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36946991

RESUMO

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2 , Cicloeximida/farmacologia , Autofagia
11.
Oncol Rep ; 48(5)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36169173

RESUMO

Upregulation of protein neddylation occurs in numerous types of human cancer, including liver cancer. MLN4924, a potent neddylation­inhibiting pharmacological agent, demonstrates anticancer ability in numerous cancers. However, the sensitivity of MLN4924 in liver cancer remains unsatisfactory due to factors causing resistance. RT­qPCR and western blotting were utilized to assess the mRNA and protein levels of genes, respectively. Cell Counting Kit­8 assay and colony formation assays were employed to assess cell viability and proliferation. The pathway of protein degradation and stability were determined by western blotting after treatment with MG132 and cycloheximide. An immunoprecipitation assay was utilized to detect the ubiquitination of protein. An in vitro ubiquitination assay was used to determine the ubiquitin linkage. To the best of our knowledge, the present study was the first to demonstrate that NF­κB inhibitor α (IκBα) downregulation and subsequent inflammation in response to MLN4924 limited the antitumor potential of MLN4924. Ectopic expression of IκBα enhanced the antitumor potential of MLN4924 in liver cancer cells. Moreover, the results of the present study demonstrated that MLN4924 decreased IκBα via promoting the K48 linkage of ubiquitin to IκBα. Mechanistic studies demonstrated that MLN4924 enhanced the protein stability of ß­transducin repeat­containing protein (ß­TrCP), promoting the ubiquitination of IκBα, which led to the ubiquitin­mediated degradation of IκBα. In addition, the results of the present study also demonstrated that ß­TrCP knockdown markedly inhibited MLN4924 from suppressing the growth of liver cancer cells, via attenuating MLN4924­mediated IκBα downregulation and inflammation. Collectively, these results indicated that the ß­TrCP/IκBα/inflammation pathway may act as a novel resistance factor of MLN4924, and targeting ß­TrCP may be beneficial for the treatment of liver cancer.


Assuntos
Neoplasias Hepáticas , Proteínas Contendo Repetições de beta-Transducina , Apoptose , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Pirimidinas , RNA Mensageiro , Enzimas Ativadoras de Ubiquitina , Ubiquitinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Contendo Repetições de beta-Transducina/genética
12.
Biochim Biophys Acta Gen Subj ; 1866(12): 130241, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36075516

RESUMO

BACKGROUND: Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS: We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS: We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/farmacologia , Etanol/metabolismo , Cicloeximida/farmacologia , Ubiquitina/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Nucleares/metabolismo
13.
Mol Biol (Mosk) ; 56(4): 628-641, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35964319

RESUMO

The ubiquitin-proteasome system is involved in the control of all essential molecular processes under normal conditions and the response of cells to stress. Rpn4p serves as a key transcriptional regulator of the proteasome in Saccharomycetes yeast and is also involved in the cellular response to various stresses. In addition to proteasomal genes, Rpn4 affects the expression of several hundred other genes, including genes involved in DNA repair and oxidative stress response. At the same time, the molecular mechanisms used by Rpn4 in controlling target genes and its functioning as a regulator of the cellular response to stress remain largely unclear. The aim of this work was to determine the Rpn4 domains required to ensure cell resistance to stress. It was shown that the N-terminal and central regions of the protein contain sites required for resistance to all types of stresses. The putative nuclear localization signal does not affect the functioning of Rpn4. Unexpectedly, a protein with the deletion of both zinc finger motifs that form the DNA-binding domain provides yeast resistance to oxidative stress and cycloheximide. Moreover, we showed that Rpn4 can be recruited to the promoter regions of the regulated genes even if they do not contain its binding sites. Based on these data, it can be assumed that Rpn4 is involved in gene regulation and the cellular response to stress due to protein-protein interactions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Cicloeximida/metabolismo , Cicloeximida/farmacologia , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
14.
Chem Biol Interact ; 366: 110125, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36027945

RESUMO

Epimedokoreanin B (EKB) is a prenylated flavonoid isolated from Epimedium koreanum. In this article, we described the anti-cancerous effects of EKB and its underlying mechanism in human non-small cell lung cancer (NSCLC) A549 and NCI-H292 cells. EKB treatment inhibited cell proliferation and migration accompanied by cytoplasmic vacuolation in both cell lines. The cell death induced by EKB lacked the features of apoptosis like chromatin condensation, phosphatidyl serine exposure and caspase cleavage. The vacuoles stimulated by EKB predominantly derived from endoplasmic reticulum (ER) and mitochondria dilation, which are the characteristics of paraptosis. Down-regulation of Alix and up-regulation of ER stress-related proteins after EKB treatment further supported the occurrence of paraptosis. ER stress inhibitor 4-phenylbutyric acid (4-PBA) and protein synthesis inhibitor cycloheximide (CHX) treatment antagonized the vacuoles formation as well as cell death induced by EKB, indicating that ER stress was involved in EKB induced paraptosis. In addition, autophagosome accumulation accompanied with autophagy flux blocking was observed in EKB treated cells, this was consistent with the occurrence of ER stress. Collectively, EKB was demonstrated as a paraptosis-like cell death inducer in A549 and NCI-H292 cells. The inhibitory effect of EKB on lung cancer cell proliferation was further demonstrated in a zebrafish xenograft model. These findings raise the possibility that paraptosis inducers may be considered as alternative choices for lung cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Apoptose , Autofagossomos , Caspases , Linhagem Celular Tumoral , Cromatina , Cicloeximida/farmacologia , Estresse do Retículo Endoplasmático , Flavonoides/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilserinas , Inibidores da Síntese de Proteínas/farmacologia , Peixe-Zebra
15.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806385

RESUMO

The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid-liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.


Assuntos
Corpos de Processamento , Proteínas de Saccharomyces cerevisiae , Cicloeximida/farmacologia , Grânulos Citoplasmáticos/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Br J Pharmacol ; 179(18): 4516-4533, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35727596

RESUMO

BACKGROUND AND PURPOSE: Limonin, a naturally occurring tetracyclic triterpenoid, has extensive pharmacological effects. Its role in cardiac hypertrophy remains to be elucidated. We investigated its effects on cardiac hypertrophy along with the potential mechanisms involved. EXPERIMENTAL APPROACH: The effects of limonin on cardiac hypertrophy in C57/BL6 mice caused by aortic banding, plus neonatal rat cardiac myocytes (NRCMs) stimulated with phenylephrine to induce cardiomyocyte hypertrophy in vitro were investigated. KEY RESULTS: Limonin markedly improved the cardiac function and heart weight in aortic banded mice. Limonin-treated mice and NRCMs also produced fewer cardiac hypertrophy markers than those treated with the vehicle in the hypertrophic groups. Sustained aortic banding- or phenylephrine-stimulation impaired cardiac sirtuin 6 (SIRT6) protein levels, which were partially reversed by limonin associated with enhanced activity of PPARα. Sirt6 siRNA inhibited the anti-hypertrophic effects of limonin in vitro. Interestingly, limonin did not influence Sirt6 mRNA levels, but regulated ubiquitin levels. Thus, the protein biosynthesis inhibitor, cycloheximide and proteasome inhibitor, MG-132, were used to determine SIRT6 protein expression levels. Under phenylephrine stimulation, limonin increased SIRT6 protein levels in the presence of cycloheximide, but it did not influence SIRT6 expression in the presence of MG-132, suggesting that limonin promotes SIRT6 levels by inhibiting its ubiquitination degradation. Furthermore, limonin inhibited the degradation of SIRT6 by activating ubiquitin-specific peptidase 10 (USP10), while Usp10 siRNA prevented the beneficial effects of limonin. CONCLUSION AND IMPLICATIONS: Limonin mediates the ubiquitination and degradation of SIRT6 by activating USP10, providing an attractive therapeutic target for cardiac hypertrophy.


Assuntos
Limoninas , Sirtuínas , Animais , Cardiomegalia/metabolismo , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Limoninas/metabolismo , Limoninas/farmacologia , Camundongos , Miócitos Cardíacos , Fenilefrina/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Sirtuínas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/farmacologia
17.
Curr Genet ; 68(3-4): 505-514, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35314878

RESUMO

Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.


Assuntos
Ophiostomatales , Antibacterianos , Cicloeximida/farmacologia , Ophiostomatales/genética , Proteínas Ribossômicas , Leveduras
18.
Clin Chim Acta ; 530: 45-49, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35248528

RESUMO

BACKGROUND AND AIMS: Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder caused by SMN1 gene mutations. About 40% of SMN1 subtle mutations produced premature termination codons (PTC). This study aims to determine the capacity of these PTCs to trigger nonsense-mediated mRNA decay (NMD) pathway. METHODS: Three nonsense mutations in SMN1, including c.43C > T, c.683T > A and c.844C > T, were investigated by using a minigene system and in vivo splicing assays. Two strategies were supplied: administration of cycloheximide (NMD inhibitor) and knockdown of UPF1 (a key NMD factor) in the cells carrying different minigenes. RESULTS: The wild-type minigene exclusively produced correctly spliced transcripts (FL-SMN1). Both the 683T > A and 844C > T expressed remarkably lower FL-SMN1 than the wild-type cells. After cycloheximide treatment, the FL-SMN1 levels in both the 683T > A and 844C > T were increased significantly compared with that of untreated cells. UPF1 knockdown in both the mutant 683T > A and 844C > T caused a dramatically augmentation of FL-SMN1 as compared to that in the cells treated with non-specific control siRNAs. CONCLUSION: Our data provide evidence that c.683T > A and c.844C > T, but not c.43C > T, in SMN1 leading to SMA trigger NMD using a minigene system. Therefore, NMD should be taken into consideration when exploring the pathogenetic mechanisms for these mutations.


Assuntos
Códon sem Sentido , Atrofia Muscular Espinal , Códon sem Sentido/genética , Cicloeximida/farmacologia , Humanos , Atrofia Muscular Espinal/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transativadores/genética , Transativadores/metabolismo
19.
J Cell Mol Med ; 26(5): 1710-1713, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118791

RESUMO

Hypertension is associated with high circulating angiotensin II (Ang II). We have reported that autophagy regulates Ang II-induced vascular smooth muscle cell (VSMC) hypertrophy, but the mechanism mediating this effect is still unknown. Therefore, we studied how Ang II regulates LC3 levels in VSMCs and whether Bag3, a co-chaperone known to regulate LC3 total levels, may be involved in the effects elicited by Ang II. A7r5 cell line or rat aortic smooth muscle cell (RASMC) primary culture were stimulated with Ang II 100 nM for 24 h and LC3 I, LC3 II and Bag3 protein levels were determined by Western blot. MAP1LC3B mRNA levels were assessed by RT-qPCR. Ang II increased MAP1LC3B mRNA levels and protein levels of LC3 I, LC3 II and total LC3 (LC3 I + LC3 II). Cycloheximide, but not actinomycin D, abolished LC3 II and total LC3 increase elicited by Ang II in RASMCs. In A7r5 cells, cycloheximide prevented the Ang II-mediated increase of LC3 I and total LC3, but not LC3 II. Moreover, Ang II increased Bag3 levels, but this increase was not observed upon co-administration with either losartan 1 µM (AT1R antagonist) or Y-27632 10 µM (ROCK inhibitor). These results suggest that Ang II may regulate total LC3 content through transcriptional and translational mechanisms. Moreover, Bag3 is increased in response to Ang II by a AT1R/ROCK signalling pathway. These data provide preliminary evidence suggesting that Ang II may stimulate autophagy in VSMCs by increasing total LC3 content and LC3 processing.


Assuntos
Angiotensina II , Músculo Liso Vascular , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/genética , Ratos
20.
Mol Cell Biochem ; 477(3): 939-949, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35094193

RESUMO

Bak is important for TNFα/CHX-induced neuronal death, but the precise molecular mechanism remains unclear. At the same time, TNFα/CHX concomitantly activates the phosphorylation of the MAPK and PI3K/AKT kinases. This study for the first time clarified the association between the MAPK and AKT under the TNFα/CHX stimulation upon addition of different kinase inhibitors to show whether Bak is associated with the kinase activation. The bioinformatics software HDOCK predicted the interaction between Bak and AKT. The addition of TNFα/CHX was proposed to destroy the complex, such that the dissociated Bak would exert a proapoptosis effect AKT can influence the inhibition of cell apoptosis. There was no cell death upon inducing TNFα/CHX for 3 h. AKT was less obvious with apoptosis but in the Bak knockout cells, the anti-apoptotic effect of AKT was very obvious. This study, therefore, provides the theoretical basis for the molecular mechanism of apoptosis induced by TNFα/CHX, providing a new target and direction for studying drug resistance.


Assuntos
Apoptose/efeitos dos fármacos , Cicloeximida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...